Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water
نویسندگان
چکیده
Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L-1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB) constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance.
منابع مشابه
Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria
Two continuous-flow bench-scale bioreactor systems populated by mixed communities of acidophilic sulfate-reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic m...
متن کاملSeasonal variations of microbial community in a full scale oil field produced water treatment plant
This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand eff...
متن کاملDecline in Performance of Biochemical Reactors for Sulphate Removal from Mine-Influenced Water is Accompanied by Changes in Organic Matter Characteristics and Microbial Population Composition
Successful long-term bioremediation of mining-influenced water using complex organic matter and naturally-occurring microorganisms in sub-surface flow constructed wetlands requires a balance between easily and more slowly degrading material. This can be achieved by combining different types of organic materials. To provide guidance on what mixture combinations to use, information is needed on h...
متن کاملStructure and function of the microbial community in an in situ reactor to treat an acidic mine pit lake.
Sulfate-reducing bioreactors are a promising option for the treatment of acid mine drainage. We studied the structure and function of a biofilm in a methanol-fed fixed-bed in-lake reactor for the treatment of an acidic pit lake by a combination of laboratory incubations, chemical and molecular analyses and confocal laser scanning microscopy to determine whether competition by different groups o...
متن کاملBiosulfides precipitation in weathered tailings amended with food waste-based compost and zeolite.
Tailings are mine wastes in the form of slurries stacked in mine sites abandoned after the exhaustion of ores. There are approximately 5000 abandoned mine sites in Korea, and tailings have become a serious environmental problem. Long-term environmental exposure of tailings can cause release of acidic and high concentrations of sulfate- and metal-contaminated water (acid mine drainage, AMD). Org...
متن کامل